enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none. This principle can be proven by reference to the intermediate value theorem : since polynomial functions are continuous , the function value must cross zero, in the process of changing from ...

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Graeffe's method – Algorithm for finding polynomial roots; Lill's method – Graphical method for the real roots of a polynomial; MPSolve – Software for approximating the roots of a polynomial with arbitrarily high precision; Multiplicity (mathematics) – Number of times an object must be counted for making true a general formula

  4. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    That lemma says that if the polynomial factors in Q[X], then it also factors in Z[X] as a product of primitive polynomials. Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime.

  5. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra), it follows that every polynomial with real coefficients can be factored into factors ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The subtraction of only multiples of 2 from the maximal number of positive roots occurs because the polynomial may have nonreal roots, which always come in pairs since the rule applies to polynomials whose coefficients are real. Thus if the polynomial is known to have all real roots, this rule allows one to find the exact number of positive and ...

  7. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the x-axis.

  8. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots.

  9. Gauss–Lucas theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Lucas_theorem

    In addition, if a polynomial of degree n of real coefficients has n distinct real zeros < < <, we see, using Rolle's theorem, that the zeros of the derivative polynomial are in the interval [,] which is the convex hull of the set of roots.