Search results
Results from the WOW.Com Content Network
L.D. Porta gives the following equation determining the efficiency of a steam locomotive, applicable to steam engines of all kinds: power (kW) = steam Production (kg h −1)/Specific steam consumption (kg/kW h). A greater quantity of steam can be generated from a given quantity of water by superheating it.
Water from the system or holding tank is then run over or near this hot element in a pipe or tank, heating the water to a suitable temperature, then making the water hot enough to boil and become saturated steam, [1] at which point the saturated steam is transported to wherever it is needed via the steam pipes that exit the body of the electric ...
A working fluid, typically water or steam, is used to transfer the heat into and out of the system. Thermal conductivity of miscibility gap alloys is often higher (up to 400 W/(m⋅K)) than competing technologies [37] which means quicker "charge" and "discharge" of the thermal storage is possible. The technology has not yet been implemented on ...
They can use a gas turbine to produce high-reliability electricity for campus use. The HRSG can recover the heat from the gas turbine to produce steam/hot water for district heating or cooling. [1] Large ocean vessels (e.g., Emma Maersk) make use of heat recovery so that their oil-fired boilers can be shut down while underway. [1]
Sections of a steam locomotive showing the many fire-tubes which carry the hot gases of the fire through the boiler to heat the water and so create steam. Boiler design is the process of designing boilers used for various purposes. The main function of a boiler is to heat water to generate steam.
Heat transfer from hot gases to water and steam. The steam power plant takes its input heat from the high temperature exhaust gases from a gas turbine power plant. [5] The steam thus generated can be used to drive a steam turbine. The Waste Heat Recovery Boiler (WHRB) has 3 sections: Economiser, evaporator and superheater.
Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
A compression ratio of 2 is possible (and sometimes more) but unless the motive steam is at a reasonably high pressure (say, 16 bar g - 250 psig - or more), the motive steam consumption will be in the range of 2 kg per kg of suction vapors. A higher compression ratio means a smaller heat exchanger, and a reduced investment cost.