enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometric series - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_series

    The uniqueness and the zeros of trigonometric series was an active area of research in 19th century Europe. First, Georg Cantor proved that if a trigonometric series is convergent to a function on the interval [,], which is identically zero, or more generally, is nonzero on at most finitely many points, then the coefficients of the series are all zero.

  3. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    In the 2nd century AD, the Greco-Egyptian astronomer Ptolemy (from Alexandria, Egypt) constructed detailed trigonometric tables (Ptolemy's table of chords) in Book 1, chapter 11 of his Almagest. [11] Ptolemy used chord length to define his trigonometric functions, a minor difference from the sine convention we use today. [12] (The value we call ...

  4. Outline of trigonometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_trigonometry

    Trigonometric Delights, by Eli Maor, Princeton University Press, 1998. Ebook version, in PDF format, full text presented. Ebook version, in PDF format, full text presented. Trigonometry by Alfred Monroe Kenyon and Louis Ingold, The Macmillan Company, 1914.

  5. Trigonometrical series - Wikipedia

    en.wikipedia.org/?title=Trigonometrical_series&...

    Pages for logged out editors learn more. Contributions; Talk; Trigonometrical series

  6. Category:Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Category:Trigonometry

    Trigonometry (from the Greek trigonon = three angles and metro = measure) is a branch of mathematics dealing with angles, triangles and trigonometric functions such as sine, cosine and tangent. It has some relationship to geometry , though there is disagreement on exactly what that relationship is; for some, trigonometry is just a subtopic of ...

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Dirichlet's treatment (Crelle, 1829), of trigonometric series was the subject of criticism and improvement by Riemann (1854), Heine, Lipschitz, Schläfli, and du Bois-Reymond. Among other prominent contributors to the theory of trigonometric and Fourier series were Dini, Hermite, Halphen, Krause, Byerly and Appell.

  8. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  9. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.