Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
An Archimedean spiral (black), a helix (green), and a conical spiral (red) Two major definitions of "spiral" in the American Heritage Dictionary are: [5]. a curve on a plane that winds around a fixed center point at a continuously increasing or decreasing distance from the point.
Helix. Tendril perversion (a transition between back-to-back helices) Hemihelix, a quasi-helical shape characterized by multiple tendril perversions; Seiffert's spiral [5] Slinky spiral [6] Twisted cubic; Viviani's curve
A curve is called a general helix or cylindrical helix [4] if its tangent makes a constant angle with a fixed line in space. A curve is a general helix if and only if the ratio of curvature to torsion is constant. [5] A curve is called a slant helix if its principal normal makes a constant angle with a fixed line in space. [6]
Options for using your home equity to pay for unexpected medical bills. You can use your home's equity in three different ways. Each has distinct features that may make one option better than ...
Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...