Search results
Results from the WOW.Com Content Network
A schematic of the nucleus of an atom indicating β − radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, a red sphere was a proton with positive charge, and a blue sphere was a proton tightly bound to an electron, with no net charge.
Sir James Chadwick (20 October 1891 – 24 July 1974) was an English physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron.In 1941, he wrote the final draft of the MAUD Report, which inspired the U.S. government to begin serious atom bomb research efforts.
In 1949, Hughes and Burgy measured neutrons reflected from a ferromagnetic mirror and found that the angular distribution of the reflections was consistent with spin 1 / 2 . [82] In 1954, Sherwood, Stephenson, and Bernstein employed neutrons in a Stern–Gerlach experiment that used a magnetic field to separate the neutron spin states.
The adoption of the term "nucleus" to atomic theory, however, was not immediate. In 1916, for example, Gilbert N. Lewis stated, in his famous article The Atom and the Molecule, that "the atom is composed of the kernel and an outer atom or shell." [12] Similarly, the term kern meaning kernel is used for nucleus in German and Dutch.
What they found was three different decay series, all alpha emitters—a form of decay not found in any other heavy element, and for which Meitner once again had to postulate multiple isomers. They did find an interesting result: under bombardment with 2.5 MeV fast neutrons, these (n, α) decay series occurred simultaneously; for slow neutrons ...
Owing to the rate of absorption of neutrons by the hydrogen in water, it was unlikely that a self-sustaining reaction could be achieved with natural uranium and water as a neutron moderator. Fermi suggested, based on his work with neutrons, that the reaction could be achieved with uranium oxide blocks and graphite as a moderator instead of ...
By 1920 he had accepted that the hydrogen nucleus is a distinct particle within the atom and named it proton. Neutrons have no electrical charge and have a mass of 1.6749 × 10 −27 kg. [37] [38] Neutrons are the heaviest of the three constituent particles, but their mass can be reduced by the nuclear binding energy.
1932 Antielectron (or positron), the first antiparticle, discovered by Carl D. Anderson [13] (proposed by Paul Dirac in 1927 and by Ettore Majorana in 1928) : 1937 Muon (or mu lepton) discovered by Seth Neddermeyer, Carl D. Anderson, J.C. Street, and E.C. Stevenson, using cloud chamber measurements of cosmic rays [14] (it was mistaken for the pion until 1947 [15])