enow.com Web Search

  1. Ads

    related to: stochastic differential equations an introduction with applications
  2. ebay.com has been visited by 1M+ users in the past month

    • Trending on eBay

      Inspired by Trending Stories.

      Find Out What's Hot and New on eBay

    • Gift Cards

      eBay Gift Cards to the Rescue.

      Give The Gift You Know They’ll Love

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...

  3. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    The calculus has been applied to stochastic partial differential equations as well. The calculus allows integration by parts with random variables; this operation is used in mathematical finance to compute the sensitivities of financial derivatives. The calculus has applications in, for example, stochastic filtering.

  4. Stochastic processes and boundary value problems - Wikipedia

    en.wikipedia.org/wiki/Stochastic_processes_and...

    Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .

  5. Stochastic calculus - Wikipedia

    en.wikipedia.org/wiki/Stochastic_calculus

    An important application of stochastic calculus is in mathematical finance, in which asset prices are often assumed to follow stochastic differential equations.For example, the Black–Scholes model prices options as if they follow a geometric Brownian motion, illustrating the opportunities and risks from applying stochastic calculus.

  6. Backward stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Backward_stochastic...

    A backward stochastic differential equation (BSDE) is a stochastic differential equation with a terminal condition in which the solution is required to be adapted with respect to an underlying filtration. BSDEs naturally arise in various applications such as stochastic control, mathematical finance, and nonlinear Feynman-Kac formula. [1]

  7. Stratonovich integral - Wikipedia

    en.wikipedia.org/wiki/Stratonovich_integral

    In physics, however, stochastic integrals occur as the solutions of Langevin equations. A Langevin equation is a coarse-grained version of a more microscopic model ( Risken 1996 ); depending on the problem in consideration, Stratonovich or Itô interpretation or even more exotic interpretations such as the isothermal interpretation, are ...

  8. Supersymmetric theory of stochastic dynamics - Wikipedia

    en.wikipedia.org/wiki/Supersymmetric_Theory_of...

    The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by Giorgio Parisi and Nicolas Sourlas, [1] [2] who demonstrated that the application of the BRST gauge fixing procedure to Langevin SDEs, i.e., to SDEs with linear phase spaces, gradient flow vector fields, and additive noises, results in N=2 supersymmetric models.

  9. Filtering problem (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Filtering_problem...

    Consider a probability space (Ω, Σ, P) and suppose that the (random) state Y t in n-dimensional Euclidean space R n of a system of interest at time t is a random variable Y t : Ω → R n given by the solution to an Itō stochastic differential equation of the form

  1. Ads

    related to: stochastic differential equations an introduction with applications