Search results
Results from the WOW.Com Content Network
A cooling curve of naphthalene from liquid to solid. A cooling curve is a line graph that represents the change of phase of matter, typically from a gas to a solid or a liquid to a solid. The independent variable (X-axis) is time and the dependent variable (Y-axis) is temperature. [1] Below is an example of a cooling curve used in castings.
The specific cooling rate that is necessary to avoid the formation of pearlite is a product of the chemistry of the austenite phase and thus the alloy being processed. The actual cooling rate is a product of both the quench severity, which is influenced by quench media, agitation, load (quenchant ratio, etc.), and the thickness and geometry of ...
There are two types of continuous cooling diagrams drawn for practical purposes. Type 1: This is the plot beginning with the transformation start point, cooling with a specific transformation fraction and ending with a transformation finish temperature for all products against transformation time for each cooling curve.
English: Example of a cooling curve of a pure metal or eutectic alloy, with various aspects pointed out. Based on image from Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, ISBN 0-471-65653-4.
However, greater undercooling by rapid quenching results in formation of martensite or bainite instead of pearlite. This is possible provided the cooling rate is such that the cooling curve intersects the martensite start temperature or the bainite start curve before intersecting the P s curve. The martensite transformation being a ...
English: The cooling curve and phase diagram of an alloy; in this case a copper/nickel alloy. Based on a diagram from Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, ISBN 0-471-65653-4.
A moderate cooling rate forms a more pearlitic matrix, while a fast cooling rate forms a more ferritic matrix. To achieve a fully ferritic matrix the alloy must be annealed. [1] [11] Rapid cooling partly or completely suppresses graphitization and leads to the formation of cementite, which is called white iron. [12]
Recalescence is an increase in temperature that occurs while cooling metal when a change in structure with an increase in entropy occurs. The heat responsible for the change in temperature is due to the change in entropy. When a structure transformation occurs the Gibbs free energy of both structures are more or less the same.