Search results
Results from the WOW.Com Content Network
The Kendall tau distance between two series is the total number of discordant pairs. The Kendall tau rank correlation coefficient, which measures how closely related two series of numbers are, is proportional to the difference between the number of concordant pairs and the number of discordant pairs.
Visual comparison of convolution, cross-correlation and autocorrelation.. A correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. [1]
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
Example scatterplots of various datasets with various correlation coefficients. The most familiar measure of dependence between two quantities is the Pearson product-moment correlation coefficient (PPMCC), or "Pearson's correlation coefficient", commonly called simply "the correlation coefficient".
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution.
In statistics, the autocorrelation of a real or complex random process is the Pearson correlation between values of the process at different times, as a function of the two times or of the time lag.
The most common definition of a correlation function is the canonical ensemble (thermal) average of the scalar product of two random variables, and , at positions and ...
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.