Search results
Results from the WOW.Com Content Network
An example of a geometric distribution arises from rolling a six-sided die until a "1" appears. Each roll is independent with a 1 / 6 {\displaystyle 1/6} chance of success. The number of rolls needed follows a geometric distribution with p = 1 / 6 {\displaystyle p=1/6} .
The Gauss–Kuzmin distribution; The geometric distribution, a discrete distribution which describes the number of attempts needed to get the first success in a series of independent Bernoulli trials, or alternatively only the number of losses before the first success (i.e. one less). The Hermite distribution; The logarithmic (series) distribution
Problems of the following type, and their solution techniques, were first studied in the 18th century, and the general topic became known as geometric probability. (Buffon's needle) What is the chance that a needle dropped randomly onto a floor marked with equally spaced parallel lines will cross one of the lines?
The problem of determining the process, ... which has a geometric distribution NB(1, ... and this is the simplest example thereof. ...
For some distributions, the minimum value of several independent random variables is a member of the same family, with different parameters: Bernoulli distribution, Geometric distribution, Exponential distribution, Extreme value distribution, Pareto distribution, Rayleigh distribution, Weibull distribution. Examples: If X 1 and X 2 are ...
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
For example, suppose that X is a random variable, the lifetime of a car engine, expressed in terms of "number of miles driven until the engine breaks down". It is clear, based on our intuition, that an engine which has already been driven for 300,000 miles will have a much lower X than would a second (equivalent) engine which has only been ...