Search results
Results from the WOW.Com Content Network
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Ohm's law holds for circuits containing only resistive elements (no capacitances or inductances) for all forms of driving voltage or current, regardless of whether the driving voltage or current is constant or time-varying such as AC. At any instant of time Ohm's law is valid for such circuits.
Analogous to Ohm's law for direct-current circuits, electrical impedance may be expressed by the formula E = I Z. So, the voltage drop in an AC circuit is the product of the current and the impedance of the circuit.
Ohm's law is satisfied when the graph is a straight line through the origin. Therefore, the two resistors are ohmic, but the diode and battery are not. For many materials, the current I through the material is proportional to the voltage V applied across it: over a wide range of voltages and currents. Therefore, the resistance and conductance ...
A matrix version of Kirchhoff's current law is the basis of most circuit simulation software, such as SPICE. The current law is used with Ohm's law to perform nodal analysis. The current law is applicable to any lumped network irrespective of the nature of the network; whether unilateral or bilateral, active or passive, linear or non-linear.
When the resistivity of a material has a directional component, the most general definition of resistivity must be used. It starts from the tensor-vector form of Ohm's law, which relates the electric field inside a material to the electric current flow. This equation is completely general, meaning it is valid in all cases, including those ...
In alternating current (AC) systems, the movement of electric charge periodically reverses direction. AC is the form of electric power most commonly delivered to businesses and residences. The usual waveform of an AC power circuit is a sine wave, though certain applications use alternative waveforms, such as triangular or square waves.
The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage. [ 1 ] [ 2 ] The usual waveform of alternating current in most electric power circuits is a sine wave , whose positive half-period corresponds with positive direction of the current and vice versa (the full ...