Search results
Results from the WOW.Com Content Network
An anatree [1] is a data structure designed to solve anagrams. Solving an anagram is the problem of finding a word from a given list of letters. These problems are commonly encountered in word games like Scrabble or in newspaper crossword puzzles. The problem for the wordwheel also has the condition that the central letter appear in all the ...
[1] Can one find a simple closed quasigeodesic on a convex polyhedron in polynomial time? [2] Can a simultaneous embedding with fixed edges for two given graphs be found in polynomial time? [3] Can the square-root sum problem be solved in polynomial time in the Turing machine model?
An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. [1] For example, the word anagram itself can be rearranged into the phrase "nag a ram"; which is an Easter egg suggestion in Google after searching for the word "anagram". [2]
The Hardest Logic Puzzle Ever is a logic puzzle so called by American philosopher and logician George Boolos and published in The Harvard Review of Philosophy in 1996. [1] [2] Boolos' article includes multiple ways of solving the problem.
For example, the character A is mapped to p, while a is mapped to 2. The use of a larger alphabet produces a more thorough obfuscation than that of ROT13; for example, a telephone number such as +1-415-839-6885 is not obvious at first sight from the scrambled result Z'\c`d\gbh\eggd. On the other hand, because ROT47 introduces numbers and ...
A Sudoku starts with some cells containing numbers (clues), and the goal is to solve the remaining cells. Proper Sudokus have one solution. [1] Players and investigators use a wide range of computer algorithms to solve Sudokus, study their properties, and make new puzzles, including Sudokus with interesting symmetries and other properties.
A Lychrel number is a natural number that cannot form a palindrome through the iterative process of repeatedly reversing its digits and adding the resulting numbers. This process is sometimes called the 196-algorithm, after the most famous number associated with the process.
Lines 2, 4, and 6 each require O(m) time. However, line 2 is only executed once, and line 6 is only executed if the hash values match, which is unlikely to happen more than a few times. Line 5 is executed O(n) times, but each comparison only requires constant time, so its impact is O(n). The issue is line 4.