enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color charge - Wikipedia

    en.wikipedia.org/wiki/Color_charge

    Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.

  3. Quantum chromodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_chromodynamics

    QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics.

  4. Strong interaction - Wikipedia

    en.wikipedia.org/wiki/Strong_interaction

    The theory of quantum chromodynamics explains that quarks carry what is called a color charge, although it has no relation to visible color. [6] Quarks with unlike color charge attract one another as a result of the strong interaction, and the particle that mediates this was called the gluon.

  5. QCD matter - Wikipedia

    en.wikipedia.org/wiki/QCD_matter

    Each of these can have an associated chemical potential. However, large volumes of matter must be electrically and color-neutral, which determines the electric and color charge chemical potentials. This leaves a three-dimensional phase space, parameterized by quark chemical potential, lepton chemical potential, and temperature.

  6. Gluon field - Wikipedia

    en.wikipedia.org/wiki/Gluon_field

    Each is a scalar field, for some component of spacetime and gluon color charge. The Gell-Mann matrices λ a are eight 3 × 3 matrices which form matrix representations of the SU (3) group . They are also generators of the SU(3) group, in the context of quantum mechanics and field theory; a generator can be viewed as an operator corresponding to ...

  7. Quark - Wikipedia

    en.wikipedia.org/wiki/Quark

    According to quantum chromodynamics (QCD), quarks possess a property called color charge. There are three types of color charge, arbitrarily labeled blue, green, and red. [nb 6] Each of them is complemented by an anticolor – antiblue, antigreen, and antired. Every quark carries a color, while every antiquark carries an anticolor. [76]

  8. Color confinement - Wikipedia

    en.wikipedia.org/wiki/Color_confinement

    Besides the quark confinement idea, there is a potential possibility that the color charge of quarks gets fully screened by the gluonic color surrounding the quark. Exact solutions of SU(3) classical Yang–Mills theory which provide full screening (by gluon fields) of the color charge of a quark have been found. [ 13 ]

  9. Charge (physics) - Wikipedia

    en.wikipedia.org/wiki/Charge_(physics)

    Various charge quantum numbers have been introduced by theories of particle physics. These include the charges of the Standard Model: The color charge of quarks. The color charge generates the SU(3) color symmetry of quantum chromodynamics. The weak isospin quantum numbers of the electroweak interaction.