enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graphene - Wikipedia

    en.wikipedia.org/wiki/Graphene

    In addition, it is known that when single-layer graphene is supported on an amorphous material, the thermal conductivity is reduced to about 500 – 600 W⋅m −1 ⋅K −1 at room temperature as a result of scattering of graphene lattice waves by the substrate, [172] [173] and can be even lower for few-layer graphene encased in amorphous ...

  3. Electronic properties of graphene - Wikipedia

    en.wikipedia.org/wiki/Electronic_properties_of...

    This is a result of the Atiyah–Singer index theorem index theorem and causes the "+1/2" term in the Hall conductivity for neutral graphene. [4] [47] In bilayer graphene, the quantum Hall effect is also observed but with only one of the two anomalies. The Hall conductivity in bilayer graphene is given by:

  4. Two-dimensional semiconductor - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_semiconductor

    A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphene, a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice. [1]

  5. Graphene chemistry - Wikipedia

    en.wikipedia.org/wiki/Graphene_chemistry

    Graphene is the only form of carbon (or solid material) in which every atom is available for chemical reaction from two sides (due to the 2D structure). Atoms at the edges of a graphene sheet have special chemical reactivity. Graphene has the highest ratio of edge atoms of any allotrope. Defects within a sheet increase its chemical reactivity. [1]

  6. Dirac cone - Wikipedia

    en.wikipedia.org/wiki/Dirac_cone

    In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. [ 1 ] [ 2 ] [ 3 ] In these materials, at energies near the Fermi level , the valence band and conduction band take the shape of the upper and lower halves ...

  7. Discovery of graphene - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_graphene

    This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp 2-bonded carbon atoms, as in free-standing graphene. However, significant charge transfers from the substrate to the epitaxial graphene, and in some cases, the d-orbitals of the substrate atoms hybridize with the π orbitals of graphene, which significantly alters ...

  8. Graphene production techniques - Wikipedia

    en.wikipedia.org/wiki/Graphene_production_techniques

    The graphene sheets are adsorbed to the high energy interface between the heptane and the water, where they are kept from restacking. The graphene remained at the interface even when exposed to force in excess of 300,000 g. The solvents may then be evaporated. The sheets are up to ~95% transparent and conductive. [19]

  9. Exfoliated graphite nanoplatelets - Wikipedia

    en.wikipedia.org/wiki/Exfoliated_graphite_nano...

    Graphene is extremely electrically conductive material. In turn, xGnP has a percolation threshold for conductivity of 1.9 wt% in thermoplastic matrix. [citation needed] At densities of 2–5 wt%, conductivity reaches sufficient levels to provide electromagnetic shielding. xGnP can also be combined with glass fibers or other matrix materials to provide sufficient conductivity for electrostatic ...