Search results
Results from the WOW.Com Content Network
Model theory analyzes formulae with respect to particular classes of interpretation in suitable mathematical structures. On this reading, a formula is valid if all such interpretations make it true. An inference is valid if all interpretations that validate the premises validate the conclusion. This is known as semantic validity. [4]
Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction ...
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general ...
Deductively valid arguments follow a rule of inference. [38] A rule of inference is a scheme of drawing conclusions that depends only on the logical form of the premises and the conclusion but not on their specific content. [39] [40] The most-discussed rule of inference is the modus ponens. It has the following form: p; if p then q; therefore q.
A particular argument is valid if it follows a valid rule of inference. Deductive arguments that do not follow a valid rule of inference are called formal fallacies: the truth of their premises does not ensure the truth of their conclusion. [18] [14] In some cases, whether a rule of inference is valid depends on the logical system one is using.
In propositional logic, hypothetical syllogism is the name of a valid rule of inference (often abbreviated HS and sometimes also called the chain argument, chain rule, or the principle of transitivity of implication). The rule may be stated:
In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q ...