Search results
Results from the WOW.Com Content Network
On a laboratory scale, sulfuric acid can be diluted by pouring concentrated acid onto crushed ice made from de-ionized water. The ice melts in an endothermic process while dissolving the acid. The amount of heat needed to melt the ice in this process is greater than the amount of heat evolved by dissolving the acid so the solution remains cold.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Corrosion may occur where stale sewage generates hydrogen sulfide gas into an atmosphere containing oxygen gas and high relative humidity. There must be an underlying anaerobic aquatic habitat containing sulfates and an overlying aerobic aquatic habitat separated by a gas phase containing both oxygen and hydrogen sulfide at concentrations in excess of 2 ppm.
The following compounds are liquid at room temperature and are completely miscible with water; ... formic acid: 64-18-6 C 5 H 6 O 2: furfuryl alcohol: 98-00-0 C 3 H 8 ...
The first and faster [citation needed] process is the removal of hydrogen and oxygen as units of water by the concentrated sulfuric acid. This occurs because hydration of concentrated sulfuric acid is strongly thermodynamically favorable, with a standard enthalpy of reaction ( ΔH ) of −880 k J / mol .
It is slightly soluble in water and acts as a weak acid (pK a = 6.9 in 0.01–0.1 mol/litre solutions at 18 °C), giving the hydrosulfide ion HS −. Hydrogen sulfide and its solutions are colorless. When exposed to air, it slowly oxidizes to form elemental sulfur, which is not soluble in water. The sulfide anion S 2− is not formed in aqueous ...
Fuming nitric acid is hazardous to handle and transport, because it is extremely corrosive and volatile. For industrial use, such strong nitration mixtures are prepared by mixing oleum with ordinary commercial nitric acid so that the free sulfur trioxide in the oleum consumes the water in the nitric acid. [11]