Search results
Results from the WOW.Com Content Network
The basic RO algorithm can then be described as: Initialize x with a random position in the search-space. Until a termination criterion is met (e.g. number of iterations performed, or adequate fitness reached), repeat the following: Sample a new position y by adding a normally distributed random vector to the current position x
Seidel (1991) gave an algorithm for low-dimensional linear programming that may be adapted to the LP-type problem framework. Seidel's algorithm takes as input the set S and a separate set X (initially empty) of elements known to belong to the optimal basis. It then considers the remaining elements one-by-one in a random order, performing ...
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
Finally the information is often contaminated by noise. The goal of information-based complexity is to create a theory of computational complexity and optimal algorithms for problems with partial, contaminated and priced information, and to apply the results to answering questions in various disciplines.
Any randomized algorithm may be interpreted as a randomized choice among deterministic algorithms, and thus as a mixed strategy for Alice. Similarly, a non-random algorithm may be thought of as a pure strategy for Alice. In any two-player zero-sum game, if one player chooses a mixed strategy, then the other player has an optimal pure strategy ...
The deterministic algorithm emulates the randomized rounding scheme: it considers each set in turn, and chooses ′ {,}. But instead of making each choice randomly based on x ∗ {\displaystyle x^{*}} , it makes the choice deterministically , so as to keep the conditional probability of failure, given the choices so far, below 1 .
Las Vegas algorithms were introduced by László Babai in 1979, in the context of the graph isomorphism problem, as a dual to Monte Carlo algorithms. [3] Babai [4] introduced the term "Las Vegas algorithm" alongside an example involving coin flips: the algorithm depends on a series of independent coin flips, and there is a small chance of failure (no result).
In competitive analysis, one imagines an "adversary" which deliberately chooses difficult data, to maximize the ratio of the cost of the algorithm being studied and some optimal algorithm. When considering a randomized algorithm, one must further distinguish between an oblivious adversary, which has no knowledge of the random choices made by ...