enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =. We first verify that the right hand side ( Y {\displaystyle Y} ) satisfies X Y = I {\displaystyle XY=I} .

  5. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  7. Anti-diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Anti-diagonal_matrix

    An anti-diagonal matrix is invertible if and only if the entries on the diagonal from the lower left corner to the upper right corner are nonzero. The inverse of any invertible anti-diagonal matrix is also anti-diagonal, as can be seen from the paragraph above. The determinant of an anti-diagonal matrix has absolute value given by the product ...

  8. Signature matrix - Wikipedia

    en.wikipedia.org/wiki/Signature_matrix

    In mathematics, a signature matrix is a diagonal matrix whose diagonal elements are plus or minus 1, that is, any matrix of the form: [1] = Any such matrix is its own inverse, hence is an involutory matrix.

  9. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its inverse: =, where Q −1 is the inverse of Q. An orthogonal matrix Q is necessarily invertible (with inverse Q −1 = Q T), unitary (Q −1 = Q ∗), where Q ∗ is the Hermitian adjoint (conjugate transpose) of Q, and therefore normal (Q ...