Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
This page was last edited on 1 February 2022, at 07:54 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
BASys (Bacterial Annotation System) is a tool for automated annotation of bacterial genomic (chromosomal and plasmid) sequences including gene/protein names, GO functions, COG functions, possible paralogues and orthologues, molecular weights, isoelectric points, operon structures, subcellular localization, signal peptides, transmembrane regions ...
This page was last edited on 8 September 2018, at 01:24 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The Lac operon is an interesting example of how gene expression can be regulated. Viruses, despite having only a few genes, possess mechanisms to regulate their gene expression, typically into an early and late phase, using collinear systems regulated by anti-terminators (lambda phage) or splicing modulators .
A structural gene is a gene that codes for any RNA or protein product other than a regulatory factor (i.e. regulatory protein).A term derived from the lac operon, structural genes are typically viewed as those containing sequences of DNA corresponding to the amino acids of a protein that will be produced, as long as said protein does not function to regulate gene expression.
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
The trp operon additionally uses attenuation to control expression of the operon, a second negative feedback control mechanism. The trp operon is well-studied and is commonly used as an example of gene regulation in bacteria alongside the lac operon .