Search results
Results from the WOW.Com Content Network
The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.
That is, LSTM can learn tasks that require memories of events that happened thousands or even millions of discrete time steps earlier. Problem-specific LSTM-like topologies can be evolved. [56] LSTM works even given long delays between significant events and can handle signals that mix low and high-frequency components.
The gated recurrent unit (GRU) simplifies the LSTM. [3] Compared to the LSTM, the GRU has just two gates: a reset gate and an update gate. GRU also merges the cell state and hidden state. The reset gate roughly corresponds to the forget gate, and the update gate roughly corresponds to the input gate. The output gate is removed.
Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]
A 380M-parameter model for machine translation uses two long short-term memories (LSTM). [23] Its architecture consists of two parts. The encoder is an LSTM that takes in a sequence of tokens and turns it into a vector. The decoder is another LSTM that converts the vector into a sequence
The standard LSTM architecture was introduced in 2000 by Felix Gers, Schmidhuber, and Fred Cummins. [20] Today's "vanilla LSTM" using backpropagation through time was published with his student Alex Graves in 2005, [21] [22] and its connectionist temporal classification (CTC) training algorithm [23] in 2006. CTC was applied to end-to-end speech ...
A RNN (often a LSTM) where a series is decomposed into a number of scales where every scale informs the primary length between two consecutive points. A first order scale consists of a normal RNN, a second order consists of all points separated by two indices and so on.
Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.