Search results
Results from the WOW.Com Content Network
Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
Cost-weighted fractions incorrect could compare expected costs of misclassification for different methods. The diagnostic odds ratio (DOR) can be a more useful overall metric, which can be defined directly as (TP×TN)/(FP×FN) = (TP/FN)/(FP/TN), or indirectly as a ratio of ratio of ratios (ratio of likelihood ratios, which are themselves ratios ...
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
Accuracy is sometimes also viewed as a micro metric, to underline that it tends to be greatly affected by the particular class prevalence in a dataset and the classifier's biases. [14] Furthermore, it is also called top-1 accuracy to distinguish it from top-5 accuracy, common in convolutional neural network evaluation. To evaluate top-5 ...
Even though the accuracy is 10 + 999000 / 1000000 ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of 10 / 10 + 990 = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = 2 × 0.01 × 1 / 0.01 + 1 ≈ 2% (the recall being 10 + 0 / 10 ...
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...