enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail

  3. Stokes number - Wikipedia

    en.wikipedia.org/wiki/Stokes_number

    = where is the relaxation time of the particle (the time constant in the exponential decay of the particle velocity due to drag), is the fluid velocity of the flow well away from the obstacle, and is the characteristic dimension of the obstacle (typically its diameter) or a characteristic length scale in the flow (like boundary layer thickness ...

  4. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The settling time is the time for departures from final value to sink below some specified level, say 10% of final value. The dependence of settling time upon μ is not obvious, and the approximation of a two-pole system probably is not accurate enough to make any real-world conclusions about feedback dependence of settling time.

  5. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict. The magnitude of overshoot depends on time through a phenomenon called "damping."

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    [5] In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical size and start falling as rain (or snow and hail). [6] Similar use of the equation can be made in the settling of fine particles in water or other fluids. [citation needed]

  7. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  8. Rise time - Wikipedia

    en.wikipedia.org/wiki/Rise_time

    For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. [6]

  9. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    A phase margin of 60 degrees is also a magic number because it allows for the fastest settling time when attempting to follow a voltage step input (a Butterworth design). An amplifier with lower phase margin will ring [nb 1] for longer and an amplifier with more phase margin will take a longer time to rise to the voltage step's final level.