Search results
Results from the WOW.Com Content Network
The two for-loops (line 7 and line 8) can be executed in parallel. The update of the next frontier (line 10) and the increase of distance (line 11) need to be atomic. Atomic operations are program operations that can only run entirely without interruption and pause. A PRAM Model. However, there are two problems in this simple parallelization.
Problems of sufficient simplicity are solved directly. For example, to sort a given list of n natural numbers, split it into two lists of about n/2 numbers each, sort each of them in turn, and interleave both results appropriately to obtain the sorted version of the given list (see the picture). This approach is known as the merge sort algorithm.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers.
The example graph, copied from above. These two variations of DFS visit the neighbors of each vertex in the opposite order from each other: the first neighbor of v visited by the recursive variation is the first one in the list of adjacent edges, while in the iterative variation the first visited neighbor is the last one in the list of adjacent ...
Animated example of a breadth-first search. Black: explored, grey: queued to be explored later on BFS on Maze-solving algorithm Top part of Tic-tac-toe game tree. Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property.
Consider an N-dimensional quantum system S coupled to a bath B and described by the combined system-bath Hamiltonian as follows: ^ = ^ ^ + ^ ^ + ^, where the interaction Hamiltonian ^ is given in the usual way as ^ = ^ ^, and where ^ (^) act upon the system (bath) only, and ^ (^) is the system (bath) Hamiltonian, and ^ (^) is the identity operator acting on the system (bath).
A basic example of short-circuiting is given in depth-first search (DFS) of a binary tree; see binary trees section for standard recursive discussion. The standard recursive algorithm for a DFS is: base case: If current node is Null, return false; recursive step: otherwise, check value of current node, return true if match, otherwise recurse on ...