Search results
Results from the WOW.Com Content Network
In engineering and systems theory, redundancy is the intentional duplication of critical components or functions of a system with the goal of increasing reliability of the system, usually in the form of a backup or fail-safe, or to improve actual system performance, such as in the case of GNSS receivers, or multi-threaded computer processing.
Data redundancy, database systems which have a field that is repeated in two or more tables; Logic redundancy, a digital gate network containing circuitry that does not affect the static logic function; Redundancy (engineering), the duplication of critical components or functions of a system with the intention of increasing reliability
Redundancy is a form of resilience that ensures system availability in the event of component failure. Components ( N ) have at least one independent backup component (+1). The level of resilience is referred to as active/passive or standby as backup components do not actively participate within the system during normal operation.
[1] [2] Data redundancy can also be used as a measure against silent data corruption; for example, file systems such as Btrfs and ZFS use data and metadata checksumming in combination with copies of stored data to detect silent data corruption and repair its effects.
RBDs will indicate the type of redundancy in the parallel path. [1] For example, a group of parallel blocks could require two out of three components to succeed for the system to succeed. By contrast, any failure along a series path causes the entire series path to fail.
Reliability, availability and serviceability (RAS), also known as reliability, availability, and maintainability (RAM), is a computer hardware engineering term involving reliability engineering, high availability, and serviceability design. The phrase was originally used by IBM as a term to describe the robustness of their mainframe computers ...
In computing, triple modular redundancy, sometimes called triple-mode redundancy, [1] (TMR) is a fault-tolerant form of N-modular redundancy, in which three systems perform a process and that result is processed by a majority-voting system to produce a single output. If any one of the three systems fails, the other two systems can correct and ...
In reliability engineering, dual modular redundancy (DMR) is when components of a system are duplicated, providing redundancy in case one should fail. It is particularly applied to systems where the duplicated components work in parallel, particularly in fault-tolerant computer systems. A typical example is a complex computer system which has ...