Search results
Results from the WOW.Com Content Network
The energy equation used for open channel flow computations is a ... subcritical” and have a Froude Number less than 1, while depths less than critical depth are ...
The extended Froude number is defined as the ratio between the kinetic and the potential energy: = + (), where u is the mean flow velocity, β = gK cos ζ, (K is the earth pressure coefficient, ζ is the slope), s g = g sin ζ, x is the channel downslope position and is the distance from the point of the mass release along the channel to the ...
The momentum equation for open-channel flow may be found by starting from the incompressible Navier-Stokes equations : ⏟ + ⏟ ⏞ = ⏟ + ⏟ ⏟ + ⏟ where is the pressure, is the kinematic viscosity, is the Laplace operator, and = is the gravitational potential.
ASTM D1941 – 91(2013) Standard Test Method for Open Channel Flow Measurement of Water with the Parshall Flume; ISO 9826:1992 Measurement of Liquid Flow in Open Channels – Parshall and SANIIRI Flumes; JIS B7553-1993 Parshall Flume Type Flowmeters; Bos, Marinus (1989). Discharge Measurement Structures. Third edition revised. Publication 20 ...
To help visualize the relationship of the upstream Froude number and the flow depth downstream of the hydraulic jump, it is helpful to plot y 2 /y 1 versus the upstream Froude Number, Fr 1. (Figure 8) The value of y 2 /y 1 is a ratio of depths that represent a dimensionless jump height; for example, if y 2 /y 1 = 2, then the jump doubles the ...
Thus, the formula is also known in Europe as the Gauckler–Manning formula or Gauckler–Manning–Strickler formula (after Albert Strickler). The Gauckler–Manning formula is used to estimate the average velocity of water flowing in an open channel in locations where it is not practical to construct a weir or flume to measure flow with ...
The one-dimensional (1-D) Saint-Venant equations were derived by Adhémar Jean Claude Barré de Saint-Venant, and are commonly used to model transient open-channel flow and surface runoff. They can be viewed as a contraction of the two-dimensional (2-D) shallow-water equations, which are also known as the two-dimensional Saint-Venant equations.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.