enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    Equivalent Spring Constant (Series) When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on ...

  3. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  4. Hill's muscle model - Wikipedia

    en.wikipedia.org/wiki/Hill's_muscle_model

    The model is constituted by a contractile element (CE) and two non-linear spring elements, one in series (SE) and another in parallel (PE). The active force of the contractile element comes from the force generated by the actin and myosin cross-bridges at the sarcomere level. It is fully extensible when inactive but capable of shortening when ...

  5. Standard linear solid model - Wikipedia

    en.wikipedia.org/wiki/Standard_Linear_Solid_model

    Materials undergoing strain are often modeled with mechanical components, such as springs (restorative force component) and dashpots (damping component).. Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2]

  6. Spring system - Wikipedia

    en.wikipedia.org/wiki/Spring_system

    A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.

  7. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    However, if the mass is displaced from the equilibrium position, the spring exerts a restoring elastic force that obeys Hooke's law. Mathematically, F = − k x , {\displaystyle \mathbf {F} =-k\mathbf {x} ,} where F is the restoring elastic force exerted by the spring (in SI units: N ), k is the spring constant ( N ·m −1 ), and x is the ...

  8. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve . An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.

  9. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity .