enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle. The cosine similarity always belongs to the interval [,].

  3. Explicit semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Explicit_semantic_analysis

    Mathematically, this list is an N-dimensional vector of word-document scores, where a document not containing the query word has score zero. To compute the relatedness of two words, one compares the vectors (say u and v) by computing the cosine similarity,

  4. Gestalt pattern matching - Wikipedia

    en.wikipedia.org/wiki/Gestalt_Pattern_Matching

    The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]

  5. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...

  6. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    In particular, words which appear in similar contexts are mapped to vectors which are nearby as measured by cosine similarity. This indicates the level of semantic similarity between the words, so for example the vectors for walk and ran are nearby, as are those for "but" and "however", and "Berlin" and "Germany".

  7. Jaccard index - Wikipedia

    en.wikipedia.org/wiki/Jaccard_index

    The definition of the ratio is the number of common bits, divided by the number of bits set (i.e. nonzero) in either sample. Presented in mathematical terms, if samples X and Y are bitmaps, X i {\displaystyle X_{i}} is the i th bit of X , and ∧ , ∨ {\displaystyle \land ,\lor } are bitwise and , or operators respectively, then the similarity ...

  8. Similarity (network science) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(network_science)

    Salton proposed that we regard the i-th and j-th rows/columns of the adjacency matrix as two vectors and use the cosine of the angle between them as a similarity measure. The cosine similarity of i and j is the number of common neighbors divided by the geometric mean of their degrees. [4] Its value lies in the range from 0 to 1.

  9. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    Another recent idea is the similarity join. When matching database relates to a large scale of data, the O(mn) time with the dynamic programming algorithm cannot work within a limited time. So, the idea is to reduce the number of candidate pairs, instead of computing the similarity of all pairs of strings.