Search results
Results from the WOW.Com Content Network
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.
Since the null hypothesis for Tukey's test states that all means being compared are from the same population (i.e. μ 1 = μ 2 = μ 3 = ... = μ k), the means should be normally distributed (according to the central limit theorem) with the same model standard deviation σ, estimated by the merged standard error, , for all the samples; its ...
[1] [2] The effect of a moderating variable is characterized statistically as an interaction; [1] that is, a categorical (e.g., sex, ethnicity, class) or continuous (e.g., age, level of reward) variable that is associated with the direction and/or magnitude of the relation between dependent and independent variables.
A distinction must be made between (1) the covariance of two random variables, which is a population parameter that can be seen as a property of the joint probability distribution, and (2) the sample covariance, which in addition to serving as a descriptor of the sample, also serves as an estimated value of the population parameter.
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information " (in units such as shannons ( bits ), nats or hartleys ) obtained about one random variable by observing the other random ...
Interaction effect of education and ideology on concern about sea level rise. In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive).
A more complex contrast can test differences among several means (ex. with four means, assigning coefficients of –3, –1, +1, and +3), or test the difference between a single mean and the combined mean of several groups (e.g., if you have four means assign coefficients of –3, +1, +1, and +1) or test the difference between the combined mean ...
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...