enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    With body-centered cubic materials (bcc), the Wöhler curve often becomes a horizontal line with decreasing stress amplitude, i.e. there is a fatigue strength that can be assigned to these materials. With face-centered cubic metals (fcc), the Wöhler curve generally drops continuously, so that only a fatigue limit can be assigned to these ...

  3. Basquin's law - Wikipedia

    en.wikipedia.org/wiki/Basquin's_law

    Basquin's law of fatigue states that the lifetime of the system has a power-law dependence on the external load amplitude, , where the exponent has a strong material dependence. [1] It is useful in expressing S-N relationships .

  4. Vibration fatigue - Wikipedia

    en.wikipedia.org/wiki/Vibration_fatigue

    Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. [ 1 ]

  5. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  6. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  7. Thermo-mechanical fatigue - Wikipedia

    en.wikipedia.org/wiki/Thermo-Mechanical_Fatigue

    Fatigue alone is the driving cause of failure in this case, causing the material to fail before oxidation can have much of an effect. [1] TMF still is not fully understood. There are many different models to attempt to predict the behavior and life of materials undergoing TMF loading. The two models presented below take different approaches.

  8. Striation (fatigue) - Wikipedia

    en.wikipedia.org/wiki/Striation_(fatigue)

    Variable amplitude loads produce striations of different widths and the study of these striation patterns has been used to understand fatigue. [6] [7] Although various cycle counting methods can be used to extract the equivalent constant amplitude cycles from a variable amplitude sequence, the striation pattern differs from the cycles extracted ...

  9. Static fatigue - Wikipedia

    en.wikipedia.org/wiki/Static_fatigue

    Static fatigue, sometimes referred to as delayed fracture, describes the progressive cracking and eventual failure of materials under a constant, sustained stress. [1] (It is different from fatigue, which refers to the deformation and eventual failure of materials subjected to cyclical stresses.) With static fatigue materials experience damage ...