Search results
Results from the WOW.Com Content Network
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
K is the logistic growth rate or steepness of the curve [19] and = / The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially.
One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...
The Hubbert curve [2] is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general [3] and also population growth patterns. [4] Example of a Hubbert Linearization on the US Lower-48 crude oil production.
Logistic function for the mathematical model used in Population dynamics that adjusts growth rate based on how close it is to the maximum a system can support; Albert Allen Bartlett – a leading proponent of the Malthusian Growth Model; Exogenous growth model – related growth model from economics; Growth theory – related ideas from economics
Under the logistic model, population growth rate between these two limits is most often assumed to be sigmoidal (Figure 1). There is scientific evidence that some populations do grow in a logistic fashion towards a stable equilibrium – a commonly cited example is the logistic growth of yeast. The equation describing logistic growth is: [12]
For the competition equations, the logistic equation is the basis. The logistic population model, when used by ecologists often takes the following form: = (). Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity.
In other words, individuals in a population would be better off when there are fewer individuals around due to a limited amount of resources (see logistic growth). However, the concept of the Allee effect introduced the idea that the reverse holds true when the population density is low.