Search results
Results from the WOW.Com Content Network
Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.
A hexagonal pyramid has seven vertices, twelve edges, and seven faces. One of its faces is hexagon, a base of the pyramid; six others are triangles. Six of the edges make up the pentagon by connecting its six vertices, and the other six edges are known as the lateral edges of the pyramid, meeting at the seventh vertex called the apex.
4-dimensional hyperpyramid with a cube as base. The hyperpyramid is the generalization of a pyramid in n-dimensional space. In the case of the pyramid, one connects all vertices of the base, a polygon in a plane, to a point outside the plane, which is the peak. The pyramid's height is the distance of the peak from the plane.
Proposition 11: The volume of a cone (or cylinder) of the same height is proportional to the area of the base. [6] Proposition 12: The volume of a cone (or cylinder) that is similar to another is proportional to the cube of the ratio of the diameters of the bases. [7] Proposition 18: The volume of a sphere is proportional to the cube of its ...
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem. The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.
Given that the edge length , its surface area and volume are: [5] = (+) =. The dihedral angle of a cuboctahedron can be calculated with the angle of triangular cupolas. The dihedral angle of a triangular cupola between square-to-triangle is approximately 125°, that between square-to-hexagon is 54.7°, and that between triangle-to-hexagon is 70 ...
The surface area A and the volume V of the rhombic dodecahedron with edge length a are: [4] =, =. The rhombic dodecahedron can be viewed as the convex hull of the union of the vertices of a cube and an octahedron where the edges intersect perpendicularly.