Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
This directly results from the fact that the integrand e −t 2 is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
However, because integration is the inverse operation of differentiation, Lagrange's notation for higher order derivatives extends to integrals as well. Repeated integrals of f may be written as () for the first integral (this is easily confused with the inverse function ()),
The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of π). As a further useful property, the zeros of the normalized sinc function are the nonzero integer values of x.
Nonelementary antiderivatives can often be evaluated using Taylor series. Even if a function has no elementary antiderivative, its Taylor series can always be integrated term-by-term like a polynomial, giving the antiderivative function as a Taylor series with the same radius of convergence. However, even if the integrand has a convergent ...