enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    Every real polynomial of odd degree has an odd number of real roots (counting multiplicities); likewise, a real polynomial of even degree must have an even number of real roots. Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none.

  3. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real coefficients, it is often useful to bound only the real roots. It suffices to bound the positive roots, as the negative roots of p(x) are the positive roots of p(–x). Clearly, every bound of all roots applies also for real roots. But in some contexts, tighter bounds of real roots are useful.

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If >, the cubic has three distinct real roots; If <, the cubic has one real root and two non-real complex conjugate roots. This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots.

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    When there is only one distinct root, it can be interpreted as two roots with the same value, called a double root. When there are no real roots, the coefficients can be considered as complex numbers with zero imaginary part, and the quadratic equation still has two complex-valued roots, complex conjugates of each-other with a non-zero ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.

  7. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    The solution in radicals (without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ...

  8. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A negative real number −x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, ⁠ + ⁠ and ⁠ ⁠, where i is the imaginary unit. In general, any non-zero complex number has n distinct complex-valued n th roots, equally distributed around a complex circle of constant absolute value .

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.