Search results
Results from the WOW.Com Content Network
An important concept is the equivalent length, , the length of a simple pendulums that has the same angular frequency as the compound pendulum: =:= = Consider the following cases: The simple pendulum is the special case where all the mass is located at the bob swinging at a distance ℓ {\displaystyle \ell } from the pivot.
All that was necessary was to time the period of an ordinary (single pivot) pendulum at the first point, then transport the pendulum to the other point and time its period there. Since the pendulum's length was constant, from (1) the ratio of the gravitational accelerations was equal to the inverse of the ratio of the periods squared, and no ...
To make this more concrete, consider an idealized pendulum of length 0.5 meters, with an initial displacement angle of 30 degrees; from Eq(1) the period will then be 1.443 seconds. Suppose the biases are −5 mm, −5 degrees, and +0.02 seconds, for L, θ, and T respectively. Then, considering first only the length bias ΔL by itself,
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
If such a pendulum were attached to the inertial platform of an inertial navigation system, the platform would remain level, facing "north", "east" and "down", as it was moved about on the surface of the Earth. The Schuler period can be derived from the classic formula for the period of a pendulum:
Using enough wire length, the described circle can be wide enough that the tangential displacement along the measuring circle of between two oscillations can be visible by eye, rendering the Foucault pendulum a spectacular experiment: for example, the original Foucault pendulum in Panthéon moves circularly, with a 6-metre pendulum amplitude ...
These curves correspond to the pendulum swinging periodically from side to side. If < then the curve is open, and this corresponds to the pendulum forever swinging through complete circles. In this system the separatrix is the curve that corresponds to =. It separates — hence the name — the phase space into two distinct areas, each with a ...
Monumental conical pendulum clock by Farcot, 1878. A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot.Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string (or rod) tracing out a ...