Search results
Results from the WOW.Com Content Network
Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.
In 2020, it was announced that Google's AlphaFold, a neural network based on DeepMind artificial intelligence, is capable of predicting a protein's final shape based solely on its amino-acid chain with an accuracy of around 90% on a test sample of proteins used by the team.
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site , and residues that catalyse a reaction of that substrate, the catalytic site .
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
In enzymology, an L-lactate dehydrogenase (cytochrome) (EC number 1.1.2.3) is an enzyme that catalyzes the chemical reaction (S)-lactate + 2 ferricytochrome c ⇌ {\displaystyle \rightleftharpoons } pyruvate + 2 ferrocytochrome c
In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. different K M values), or are regulated differently.
Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy. [1]