Search results
Results from the WOW.Com Content Network
The darcy (or darcy unit) and millidarcy (md or mD) are units of permeability, named after Henry Darcy. They are not SI units , but they are widely used in petroleum engineering and geology . The unit has also been used in biophysics and biomechanics, where the flow of fluids such as blood through capillary beds and cerebrospinal fluid through ...
The SI unit for permeability is the square metre (m 2). A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 d ≈ 10 −12 m 2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for most materials ...
Darcy's law, which describes the flow of a fluid through porous material; Darcy (unit), a unit of permeability of fluids in porous material; Darcy friction factor in the field of fluid mechanics; Darcy–Weisbach equation used in hydraulics for calculation of the head loss due to friction
In fluid dynamics through porous media, the Darcy number (Da) represents the relative effect of the permeability of the medium versus its cross-sectional area—commonly the diameter squared. The number is named after Henry Darcy and is found from nondimensionalizing the differential form of Darcy's law .
A reservoir may consists of several flow units that are separated by tight shale layers. Fluid from one reservoir or flow unit can enter a fault at one depth and exit the fault in another reservoir or flow unit at another depth. Likewise can fluid enter a production well in one flow unit and exit the production well in another flow unit or ...
The above form for Darcy's law is sometimes also called Darcy's extended law, formulated for horizontal, one-dimensional, immiscible multiphase flow in homogeneous and isotropic porous media. The interactions between the fluids are neglected, so this model assumes that the solid porous media and the other fluids form a new porous matrix through ...
The phenomenological Colebrook–White equation (or Colebrook equation) expresses the Darcy friction factor f as a function of Reynolds number Re and pipe relative roughness ε / D h, fitting the data of experimental studies of turbulent flow in smooth and rough pipes.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.