Search results
Results from the WOW.Com Content Network
Heat cannot spontaneously flow from cold regions to hot regions without external work being performed on the system, which is evident from ordinary experience of refrigeration, for example. In a refrigerator, heat is transferred from cold to hot, but only when forced by an external agent, the refrigeration system.
Some food processing equipment may make use of Joule heating: running a current through food material (which behave as an electrical resistor) causes heat release inside the food. [2] The alternating electrical current coupled with the resistance of the food causes the generation of heat. [3] A higher resistance increases the heat generated.
Hot areas are shown in red, cold areas are shown in blue. A hot, less-dense material at the bottom moves upwards, and likewise, cold material from the top moves downwards. Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid.
A hot, less-dense lower boundary layer sends plumes of hot material upwards, and cold material from the top moves downwards. Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems.
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
Thermal conductivity, frequently represented by k, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. [1]
This motion of heat takes place in three ways, which a common fire-place very well illustrates. If, for instance, we place a thermometer directly before a fire, it soon begins to rise, indicating an increase of temperature. In this case the heat has made its way through the space between the fire and the thermometer, by the process termed ...
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...