Search results
Results from the WOW.Com Content Network
In statistics, multicollinearity or collinearity is a situation where the predictors in a regression model are linearly dependent. Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship.
Standardized coefficients shown as a function of proportion of shrinkage. In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.
Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]
A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. [2]
To detect multi-collinearity among the predictors, one can conduct a linear regression analysis with the predictors of interest for the sole purpose of examining the tolerance statistic used to assess whether multi-collinearity is unacceptably high. Sparseness in the data refers to having a large proportion of empty cells (cells with zero counts).
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression. [1] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.