Search results
Results from the WOW.Com Content Network
In chemical graph theory and in mathematical chemistry, a molecular graph or chemical graph is a representation of the structural formula of a chemical compound in terms of graph theory. A chemical graph is a labeled graph whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds.
Mathematical chemistry [1] is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. [2] Mathematical chemistry has also sometimes been called computer chemistry, but should not be confused with computational chemistry.
Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena. [1] The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo Hosoya, Milan Randić and Nenad Trinajstić [2] (also Harry Wiener and others). In 1988, it was ...
Operations between graphs include evaluating the direction of a subsumption relationship between two graphs, if any, and computing graph unification. The unification of two argument graphs is defined as the most general graph (or the computation thereof) that is consistent with (i.e. contains all of the information in) the inputs, if such a ...
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.
The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.
A topological index may have the same value for a subset of different molecular graphs, i.e. the index is unable to discriminate the graphs from this subset. The discrimination capability is very important characteristic of topological index. To increase the discrimination capability a few topological indices may be combined to superindex. [12]
This notion has made it possible to use the methods of graph theory in universal algebra and several other areas of discrete mathematics and computer science.Graph algebras have been used, for example, in constructions concerning dualities, [2] equational theories, [3] flatness, [4] groupoid rings, [5] topologies, [6] varieties, [7] finite-state machines, [8] [9] tree languages and tree ...