Search results
Results from the WOW.Com Content Network
Two metrics and on X are strongly or bilipschitz equivalent or uniformly equivalent if and only if there exist positive constants and such that, for every ,, (,) (,) (,).In contrast to the sufficient condition for topological equivalence listed above, strong equivalence requires that there is a single set of constants that holds for every pair of points in , rather than potentially different ...
Elementary equivalence; Equals sign; Equality (mathematics) Equality operator; Equipollence (geometry) Equivalence (measure theory) Equivalence class; Equivalence of categories; Equivalence of metrics; Equivalence relation; Equivalence test; Equivalent definitions of mathematical structures; Equivalent infinitesimal; Equivalent latitude ...
Metric conversion may refer to: Converting a non-metric quantity to the metric equivalent; see " Conversion of units " Conversion of a country from non-metric units to metric units; see " Metrication "
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file
For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [ 1 ] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.
Here the metric prefix 'kilo-' (symbol 'k') stands for a factor of 1000; thus, 1 km = 1000 m. The SI provides twenty-four metric prefixes that signify decimal powers ranging from 10 −30 to 10 30, the most recent being adopted in 2022.