enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1,3-Bisphosphoglyceric acid - Wikipedia

    en.wikipedia.org/wiki/1,3-Bisphosphoglyceric_acid

    1,3-Bisphosphoglyceric acid (1,3-Bisphosphoglycerate or 1,3BPG) is a 3-carbon organic molecule present in most, if not all, living organisms.It primarily exists as a metabolic intermediate in both glycolysis during respiration and the Calvin cycle during photosynthesis. 1,3BPG is a transitional stage between glycerate 3-phosphate and glyceraldehyde 3-phosphate during the fixation/reduction of ...

  3. Entner–Doudoroff pathway - Wikipedia

    en.wikipedia.org/wiki/Entner–Doudoroff_pathway

    The G3P is converted to 1,3-bisphosphoglycerate in the presence of enzyme glyceraldehyde-3-phosphate dehydrogenase (an oxido-reductase). The aldehyde groups of the triose sugars are oxidised , and inorganic phosphate is added to them, forming 1,3-bisphosphoglycerate .

  4. Substrate-level phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Substrate-level_phosphory...

    The first substrate-level phosphorylation occurs after the conversion of 3-phosphoglyceraldehyde and Pi and NAD+ to 1,3-bisphosphoglycerate via glyceraldehyde 3-phosphate dehydrogenase. 1,3-bisphosphoglycerate is then dephosphorylated via phosphoglycerate kinase, producing 3-phosphoglycerate and ATP through a substrate-level phosphorylation.

  5. Glyceraldehyde 3-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate

    Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms. [2] [3] With the chemical formula H(O)CCH(OH)CH 2 OPO 3 2-, this anion is a monophosphate ester of ...

  6. Glyceraldehyde 3-phosphate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate...

    The first reaction is the oxidation of glyceraldehyde 3-phosphate (G3P) at the position-1 (in the diagram it is shown as the 4th carbon from glycolysis), in which an aldehyde is converted into a carboxylic acid (ΔG°'=-50 kJ/mol (−12kcal/mol)) and NAD+ is simultaneously reduced endergonically to NADH.

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  8. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    To create 1 surplus G3P requires 3 carbons, and therefore 3 turns of the Calvin cycle. To make one glucose molecule (which can be created from 2 G3P molecules) would require 6 turns of the Calvin cycle. Surplus G3P can also be used to form other carbohydrates such as starch, sucrose, and cellulose, depending on what the plant needs. [10]

  9. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Each molecule of glyceraldehyde 3-phosphate is phosphorylated to form 1,3-bisphosphoglycerate. This reaction is catalyzed by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The cascade effect of phosphorylation eventually causes instability and allows enzymes to open the carbon bonds in glucose.