Search results
Results from the WOW.Com Content Network
Sentiment analysis (also known as opinion mining or emotion AI) is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information.
Multimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. [1] It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. [ 2 ]
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.
The analysis of appraisal has also become influential outside Systemic Functional Linguistics, in various types of discourse analysis. [8] References
The simplest and most objective form of content analysis considers unambiguous characteristics of the text such as word frequencies, the page area taken by a newspaper column, or the duration of a radio or television program. Analysis of simple word frequencies is limited because the meaning of a word depends on surrounding text.
Market sentiment, also known as investor attention, is the general prevailing attitude of investors as to anticipated price development in a market. [1] This attitude is the accumulation of a variety of fundamental and technical factors, including price history, economic reports, seasonal factors, and national and world events.