Search results
Results from the WOW.Com Content Network
The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...
These equations for solution of a first-order partial differential equation are identical to the Euler–Lagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.
This is a generalization of the Euler–Lagrange equation: indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the principle of least action in Lagrangian mechanics (18th century).
The standard tool for obtaining necessary conditions for a function to be a minimizer is the Euler–Lagrange equation. But seeking a minimizer amongst functions satisfying these may lead to false conclusions if the existence of a minimizer is not established beforehand. The functional must be bounded from below to have a minimizer. This means
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf.
The Beltrami identity, named after Eugenio Beltrami, is a special case of the Euler–Lagrange equation in the calculus of variations. The Euler–Lagrange equation serves to extremize action functionals of the form [] = [, (), ′ ()],
The equations of motion for the particle are found by applying the Euler–Lagrange equation, for the x coordinate (˙) =, with derivatives =, ˙ = ˙, (˙) = ¨, hence ¨ =, and similarly for the y and z coordinates.
A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y.. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ (Y) of exterior forms on jet manifolds of Y → X.