Search results
Results from the WOW.Com Content Network
This problem has a graph-theoretic solution in which a graph with four vertices labeled B, G, R, W (for blue, green, red, and white) can be used to represent each cube; there is an edge between two vertices if the two colors are on the opposite sides of the cube, and a loop at a vertex if the opposite sides have the same color. Each individual ...
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
Using a heuristic, find a solution x h to the optimization problem. Store its value, B = f(x h). (If no heuristic is available, set B to infinity.) B will denote the best solution found so far, and will be used as an upper bound on candidate solutions. Initialize a queue to hold a partial solution with none of the variables of the problem assigned.
Here, m=2 and there are 10 subsets of 2 indices, however, not all of them are bases: the set {3,5} is not a basis since columns 3 and 5 are linearly dependent. The set B={2,4} is a basis, since the matrix = is non-singular.
In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...
If an analytic form of the CDF is available this provides a concentration equality that provides the exact probability of concentration. It is precisely when the CDF is difficult to calculate or even the exact form of the first random variable is unknown that the applicable concentration inequalities provide useful insight.
J.M. Harrison and R.J. Williams note that "virtually all of the models that have been successfully analyzed in classical queueing network theory are models having a so-called product-form stationary distribution" [9] More recently, product-form solutions have been published for Markov process algebras (e.g. RCAT in PEPA [11] [12]) and ...
In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [ 1 ] Let G {\displaystyle G} be a regular graph whose degree is an even number, 2 k {\displaystyle 2k} .