enow.com Web Search

  1. Ads

    related to: unique factorization domains in math chart 5th
  2. education.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...

  3. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  4. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain). The fundamental theorem of arithmetic says that Q has class number 1.

  5. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID.

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  7. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    More technically, a greatest common divisor of a and b is a generator of the ideal generated by a and b (this characterization is valid for principal ideal domains, but not, in general, for unique factorization domains). The greatest common divisor of two Gaussian integers is not unique, but is defined up to the multiplication by a unit.

  8. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    This difficulty was resolved by Dedekind, who proved that the rings of algebraic integers have unique factorization of ideals: in these rings, every ideal is a product of prime ideals, and this factorization is unique up the order of the factors. The integral domains that have this unique factorization property are now called Dedekind domains ...

  9. Regular local ring - Wikipedia

    en.wikipedia.org/wiki/Regular_local_ring

    Once such techniques were introduced in the 1950s, Auslander and Buchsbaum proved that every regular local ring is a unique factorization domain. Another property suggested by geometric intuition is that the localization of a regular local ring should again be regular. Again, this lay unsolved until the introduction of homological techniques.

  1. Ads

    related to: unique factorization domains in math chart 5th