Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
43 = (−9) × (−5) + (−2) and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5 ...
The division yields a quotient of + with a remainder of −1, which, since it is odd, has a last bit of 1. In the above equations, x 3 + x 2 + x {\displaystyle x^{3}+x^{2}+x} represents the original message bits 111 , x + 1 {\displaystyle x+1} is the generator polynomial, and the remainder 1 {\displaystyle 1} (equivalently, x 0 {\displaystyle x ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
As an example of implementing polynomial division in hardware, suppose that we are trying to compute an 8-bit CRC of an 8-bit message made of the ASCII character "W", which is binary 01010111 2, decimal 87 10, or hexadecimal 57 16.
This construction is analogous to the Chinese remainder theorem. Instead of checking for remainders of integers modulo prime numbers, we are checking for remainders of polynomials when divided by linears. Furthermore, when the order is large, Fast Fourier transformation can be used to solve for the coefficients of the interpolated polynomial.
Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end. This algorithm is then called the Fletcher-32 checksum. The use of the modulus 2 16 − 1 = 65,535 is also generally implied. The rationale for ...