enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    The phenomenon of irreversibility results from the fact that if a thermodynamic system, which is any system of sufficient complexity, of interacting molecules is brought from one thermodynamic state to another, the configuration or arrangement of the atoms and molecules in the system will change in a way that is not easily predictable.

  3. Loschmidt's paradox - Wikipedia

    en.wikipedia.org/wiki/Loschmidt's_paradox

    In physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (from German 'reversal objection'), [1] is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics.

  4. Clausius–Duhem inequality - Wikipedia

    en.wikipedia.org/wiki/Clausius–Duhem_inequality

    The Clausius–Duhem inequality can be expressed in integral form as () + .In this equation is the time, represents a body and the integration is over the volume of the body, represents the surface of the body, is the mass density of the body, is the specific entropy (entropy per unit mass), is the normal velocity of , is the velocity of particles inside , is the unit normal to the surface, is ...

  5. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

  6. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  7. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.

  8. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The second law of thermodynamics indicates the irreversibility of natural processes, and in many cases, the tendency of natural processes to lead towards spatial homogeneity of matter and energy, especially of temperature. It can be formulated in a variety of interesting and important ways.

  9. Isothermal titration calorimetry - Wikipedia

    en.wikipedia.org/wiki/Isothermal_Titration...

    In chemical thermodynamics, isothermal titration calorimetry (ITC) is a physical technique used to determine the thermodynamic parameters of interactions in solution. [1] [2] It is most often used to study the binding of small molecules (such as medicinal compounds) to larger macromolecules (proteins, DNA etc.) in a label-free environment.

  1. Related searches what is irreversibility in thermodynamics test results interpretation celiac

    reversibility of thermodynamicsirreversible process theories