Search results
Results from the WOW.Com Content Network
In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).
Sometimes it really is, but in general it is not. Especially, Z is distributed uniformly on (-1,+1) and independent of the ratio Y/X, thus, P ( Z ≤ 0.5 | Y/X) = 0.75. On the other hand, the inequality z ≤ 0.5 holds on an arc of the circle x 2 + y 2 + z 2 = 1, y = cx (for any given c). The length of the arc is 2/3 of the length of the circle.
Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter.
The DBAR problem, or the ¯-problem, is the problem of solving the differential equation ¯ (, ¯) = for the function (, ¯), where () is assumed to be known and = + is a complex number in a domain.
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences; Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
If you love Scrabble, you'll love the wonderful word game fun of Just Words. Play Just Words free online!
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...