Search results
Results from the WOW.Com Content Network
Methionine synthase catalyzes the final step in the regeneration of methionine (Met) from homocysteine (Hcy). Both the cobalamin-dependent and cobalamin-independent forms of the enzyme carry out the same overall chemical reaction, the transfer of a methyl group from 5-methyltetrahydrofolate (N 5 -MeTHF) to homocysteine, yielding ...
The Methionine Synthase Reductase (MTRR) gene primarily acts in the reductive regeneration of cob(I)alamin (vitamin B12). [10] Cob(I)alamin is a cofactor that maintains activation of the methionine synthase enzyme (MTR) Methionine synthase, linking folate and methionine metabolism. Donation of methyl groups from folate are utilized for cellular ...
The production of homocysteine through transsulfuration allows the conversion of this intermediate to methionine, through a methylation reaction carried out by methionine synthase. The reverse pathway is present in several organisms, including humans, and involves the transfer of the thiol group from homocysteine to cysteine via a similar ...
The enzyme from Escherichia coli consists of two alpha8-beta8 (TIM) barrels positioned face to face and thought to have evolved by gene duplication. [1] The active site lies between the tops of the two barrels, the N-terminal barrel binds 5-methyltetrahydropteroyltri-L-glutamic acid and the C-terminal barrel binds homocysteine.
thiopurine methyltransferase: defects in this gene causes toxic accumulation of thiopurine compounds, drugs used in chemotherapy and immunosuppressant therapy; methionine synthase: pernicious anemia, caused by Vitamin B12 deficiency, is caused by a lack of cofactor for the methionine synthase enzyme
Homocysteine (left) and methionine (right) are related by demethylation and remethylation. Remethylation is a major step in the conversion of homocysteine to the essential amino acid methionine . The remethylation process involves the enzyme methionine synthase (MS), which requires vitamin B 12 as a cofactor, and also depends indirectly on ...
In the field of enzymology, a betaine-homocysteine S-methyltransferase also known as betaine-homocysteine methyltransferase (BHMT) is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from trimethylglycine and a hydrogen ion from homocysteine to produce dimethylglycine and methionine respectively: [2]
[Methionine synthase] reductase, or Methionine synthase reductase, [1] encoded by the gene MTRR, is an enzyme that is responsible for the reduction of methionine synthase inside human body. This enzyme is crucial for maintaining the one carbon metabolism, specifically the folate cycle. The enzyme employs one coenzyme, flavoprotein.