Search results
Results from the WOW.Com Content Network
In organic chemistry, Baird's rule estimates whether the lowest triplet state of planar, cyclic structures will have aromatic properties or not. The quantum mechanical basis for its formulation was first worked out by physical chemist N. Colin Baird at the University of Western Ontario in 1972.
Nucleus Independent Chemical Shift (NICS) analysis is a method of computing the ring shielding (or deshielding) at the center of a ring system to predict aromaticity or antiaromaticity. A negative NICS value is indicative of aromaticity and a positive value is indicative of antiaromaticity. [9]
In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π-electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931.
In this method, negative NICS values indicate aromaticity, and positive values indicate antiaromaticity. [6] [7] There are a variety of methods to calculate NICS values, however, the most robust method for calculating NICS values involves scanning the molecule in a NICSzz scan. In this process, the NICS value is calculated above the rings, and ...
Clar's rule has also been supported by experimental results about the distribution of π-electrons in polycyclic aromatic hydrocarbons, [7] valence bond calculations, [8] and nucleus-independent chemical shift studies. [9] Clar's rule is widely applied in the fields of chemistry and materials science.
In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. [ 1 ] [ 2 ] In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which there is an odd number of out-of-phase overlaps, the opposite pattern compared to the ...
In the compound on the left, the base value is 214 nm (a heteroannular diene). This diene group has 4 alkyl substituents (labeled 1,2,3,4) and the double bond in one ring is exocyclic to the other (adding 5 nm for an exocyclic double bond). In the compound on the right, the diene is homoannular with 4 alkyl substituents.
In organic chemistry, an anti-Bredt molecule is a bridged molecule with a double bond at the bridgehead. Bredt's rule is the empirical observation that such molecules only form in large ring systems. For example, two of the following norbornene isomers violate Bredt's rule, and are too unstable to prepare: Bridgehead atoms violating Bredt's ...