Search results
Results from the WOW.Com Content Network
Doppler spectrum. Deliberately no units given (but could be dBu and MHz for example). This is an issue only with a particular type of system; the pulse-Doppler radar, which uses the Doppler effect to resolve velocity from the apparent change in frequency caused by targets that have net radial velocities compared to the radar device. Examination ...
Pulsus bisferiens, also known as biphasic pulse, is an aortic waveform with two peaks per cardiac cycle, a small one followed by a strong and broad one. [1] It is a sign of problems with the aorta , including aortic stenosis and aortic regurgitation , as well as hypertrophic cardiomyopathy causing subaortic stenosis.
Pulse-Doppler signal processing separates reflected signals into a number of frequency filters. There is a separate set of filters for each ambiguous range. The I and Q samples described above are used to begin the filtering process. These samples are organized into the m × n matrix of time domain samples shown in the top half of the diagram.
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.
The word "dopplergraph" is a combination of the words doppler and photograph. Dopplergraphs are two-dimensional records of variations in the doppler shift in light intensity. Dopplergraphs do not need to be a record of the shift of visible light, but of any radiated wave, which includes electromagnetic waves and acoustic waves.
Coupling multiple spatial channels with pulse-Doppler waveforms lends to the name "space-time." Applying the statistics of the interference environment, an adaptive STAP weight vector is formed. This weight vector is applied to the coherent samples received by the radar.
Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.
The E/A ratio is measured by placing a pulsed wave Doppler across the mitral valve and measuring the velocities across the valve. Hence, there are other names for the test, such as transmitral velocity profile, transmitral flow profile, transmitral flow velocity profile or transmitral Doppler waveforms. [citation needed]